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Abstract 
A thin-shell model of the liner stability has been revisited and applied to the stability of the helical 
perturbations. Several stages of the implosion have been identified, starting from a long initial 
“latent” phase of an almost resting liner, continuing to the second stage of a rapid contraction and 
significant perturbation growth, and then transitioning to the third stage where perturbations 
become ballistic and highly non-linear. The stage of stagnation and rebound is beyond the scope 
of this paper. An importance of vorticity conservation during the late stages is emphasized. 
Nonlinear evolution of perturbations is followed up to the point of the formation of cusp 
structures. Effects of in-surface flows and of their enhancement due to the vorticity conservation 
are discussed. It is shown that the pre-machined perturbations created only on the outer surface of 
the liner grow much slower than one could anticipate. The limitations on the thin-shell description 
are discussed.  
 
I. INTRODUCTION 
 
 The physics of magnetically imploded conducting shells is an interesting problem 
of non-linear magneto-hydrodynamics (MHD) and has drawn significant attention in the 
past. In addition to its fundamental importance (see, e.g., original papers [1-4] and 
reviews [5, 6]) it has also a number of applications, especially in fusion research, e.g. [7-
9] and in radiation generation, e.g. [10, 11]. Imploding shells can also serve as a platform 
for the studies in the area of laboratory astrophysics, e.g. [12, 13].  
 We consider implosion of an empty cylindrical shell driven by a magnetic 
pressure of the azimuthal field (the Z-pinch geometry) or, in some cases, by a 
combination of the azimuthal and axial fields (the screw-pinch geometry). The thin-shell 
model is based on the assumption that the shell thickness is less than all other important 
parameters of the dimension of length: pinch radius and length, and both azimuthal and 
axial wavelength of the perturbations. At the same time, the shell is considered as 
perfectly conducting, so that the drive field does not penetrate through the shell. This set 
of constraints may not necessarily hold through the whole implosion process of a real 
liner and therefore would not allow us to reach a consistent description of the whole 
process. On the other hand, this model can provide important insights into the physics of 
specific individual effects and help in developing an intuitive explanation for some of 
them.  
 We include in the analysis the helical modes with the finite azimuthal mode 
number m. We focus on the linear stability, although a qualitative discussion of some 
non-linear effects is also provided. As mentioned, the model of a thin shell is based on the 
assumption that the liner thickness h is small compared both to the wavelength of the 
perturbations and the instantaneous shell radius a(t). Under such conditions, the internal 
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structure of the shell becomes unimportant and the shell is characterized by a single 
parameter, µ, the mass per unit surface area [1, 2]. 
 A linear stability analysis of a thin cylindrical shell imploded by the magnetic 
pressure was performed in a seminal paper by E.G. Harris [1]. E.G. Harris has considered 
the situations where the drive field is directed either azimuthally (as in the Z-pinch) or 
axially (as in the theta pinch) and derived expression for the instantaneous growth rate. 
To describe the helical perturbations in the case of a screw-pinch drive we have to include 
both azimuthal and axial fields simultaneously and we do that below. We extend our 
linear analysis beyond the model of the instantaneous growth rate in Sec. IV and V. 
Another difference of our paper from Ref. 1 is in the proper accounting for the azimuthal 
momentum evolution of the imploding shell. We discuss this latter issue in Sec. II and VI.  
 An elegant analysis by T. Ott [2] addressed instability of a thin planar shell driven 
by a light (formally massless) gas; it was shown that, by using Lagrangian description, 
one can obtain a complete non-linear solution for an x-y flow. This analysis was later 
generalized to the “flute” perturbation of a cylindrical shell driven by the pressure of an 
axial field [3]. Another extension of Ott’s analysis was a study of non-linear evolution of 
an axisymmetric perturbation of a thin shell driven by a massless gas [4]. Note that the 
magnetic drive, generally speaking, cannot be reduced to the massless gas drive 
considered in Refs. 2, 4, as in this case there is no pressure perturbation on the liner 
surface, whereas in the case of a magnetic drive, generally speaking, the pressure is 
perturbed (except for some special cases, like the case of flute perturbations driven by a 
purely axial field as in Ref. 3). 
 Other aspects of the helical perturbations of the Z-pinch have been studied for the 
equilibrium situations (no acceleration/deceleration of the liner surface), see the classical 
analyses by Kruskal and Shafranov [14, 15] and an excellent summary in a review by 
Kadomtsev [16].  The instability of an equilibrium pinch is related to the unfavorable 
curvature of the magnetic field at the pinch surface. In more recent history, a lot of 
attention was directed also to the effect of the line-tying at the ends of the equilibrium 
pinch (e.g., [17-20]). Unlike the references [14-20], we consider here instability of an 
accelerated shell, where the equivalent gravity force has a significant and even decisive 
dynamical effect, making the instability to look like a Rayleigh-Taylor instability, whence 
the sometimes used term “Magneto-Rayleigh-Taylor” (MRT) instability. In this paper, 
following the analysis by E.G. Harris,  we account for both types of the instability drive: 
acceleration and unfavorable field curvature.    
 Recently, the studies of helical perturbations have acquired additional significance 
in conjunction with their experimental identification in the pioneering experiments by 
researchers from Sandia National Laboratories [21, 22]. The present paper does not 
pretend to provide a complete self-consistent picture of a very complex dynamical system 
but it may help in developing physical intuition. The author describes and analyses 
several stages of the implosion and attempts to identify most salient features of each 
stage. The connection between the stages is made on a qualitative level. The very late 
stage of the implosion, where the plasma inside the liner becomes so dense and hot that 
its pressure begins to affect the liner dynamics is not considered at all. Still, with these 
limitations a more or less complete picture of a thin-shell implosion emerges, from the 
cold start, to the end of the run-in phase, where the liners transitions to the stagnation 
phase (not covered here). 
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II. BASIC EQUATIONS 
  
A. The geometry and the drive field 
 
 In the unperturbed state, the shell is assumed to be an axisymmetric imploding 
cylinder. The magnetic field that compresses it may have two components: an azimuthal 
field of an axial current (as in the Z-pinches) and an axial field Bz (as in the theta-
pinches), giving rise to the screw-pinch geometry. The plasma pressure outside the liner 
is assumed to be negligibly small, so that the liner acceleration is entirely determined by 
the magnetic pressure acting on its surface. We neglect the presence of an axial field and 
plasma inside the liner: their pressure is small compared to the drive pressure until very 
late stage of the implosion. In principle, one can include them into the thin-shell model, 
but this would make the analysis too lengthy. We assume that the radius of the return 
current conductor is much greater than the initial liner radius and the pinch length is much 
greater than the wavelength of the perturbations, so that the edge effects are unimportant. 
 One can consider various time-histories of the azimuthal and axial driving fields. 
To make the study manageable, we assume that the axial field constitutes some constant 
fraction of the azimuthal field:  
 Bz (t) =αBϕ (t)          (1) 
Although our general results cover arbitrary values of α, we focus on the situations where 
the axial field is dominant, so that α is small. 
 
B. Unperturbed motion 
  
Thin-shell model provides a good description for the modes with modest axial wave 
number k and azimuthal mode number m. Specifically, its applicability is constrained by 
the conditions   
 kh<1, mh/a<1,         (2) 
where h is the shell thickness. A great advantage of this model is related to its ability to 
describe the features of the helical perturbations by simple analytical tools.  
 Unperturbed motion of the shell is a radial implosion, where the position of the 
shell a(t) is described by the equations 

 ,         (3) 

 ,         (4) 

where p(t) is the magnetic pressure and µ is the mass per unit surface area. Equation (4) is 
a mass conservation equation for the cylindrical shell. Equations (3)-(4) correspond to the 
unperturbed axisymmetric implosion, prior to the imposition of small perturbations. A 
convenient characteristic of the implosion process is an absolute value of the 
instantaneous acceleration, 

 .         (5) 

Bϕ

µ(t) d
2a
dt2

= −p(t)

d
dt

a(t)µ(t)[ ] = 0

g(t) = p(t)
µ(t)
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Note that g is positive in our analysis (i.e., the sign convention is different from Ref. 1). 
The unperturbed magnetic field has an axial component Bz and an azimuthal component 
Bϕ, and the unperturbed pressure is  

 p =
Bϕ
2 +Bz

2

8π
= 1+α 2( ) Bϕ

2

8π
       (6) 

where the fields are evaluated at the liner surface. The driving pressure in this model 
scales as or as , where I is a Z-pinch current.  
 A salient feature of the liner implosions is the presence of a long “latent phase” 
when the current gradually rises to high values, but the liner does not yet move by any 
significant distance, so that Δa ≡ a0 − a(t)<< a0 . This feature is a result of the structure of 
the governing equation (3): the liner displacement is a result of two integrations over the 
time, so that it remains small even after the acceleration g and growth rates have already 
reached significant values. A nice example of the exact solution of Eq. (3) for the bell-
shaped current profile is presented in Slutz et al. [23].  
 A reasonable approximation for the current at an early stage of the implosion is a 
linear function of time, this yielding a parabolic dependence of g(t) at this stage: 

 .         (7) 

For the parabolic model (7), the shell radius changes as 

 .        (8) 

We set then g0  to be 

 .         (9) 

This choice of parameters fits quite well the Slutz’s et al. analytical model [23] until t=τ , 
if τ is chosen to be 0.8 of the total implosion time. As Eq. (8) shows, the change of the 
radius at t=τ is indeed about 15% of the initial radius, so that the model of a constant 
radius is well justified up to t=τ.  The liner velocity at t=τ is: 

 
.        (10) 

At later stages, the radius starts changing very rapidly and an approximation of the 
constant radius breaks down. 
 An interesting feature of the implosion is that, starting from t=τ, the current 
changes only by ~10% with respect to its value at the end of the latent phase (see, e.g., 
Refs. 5, 7, 22).  In other words, the current at the final stage of the implosion can be 
approximately considered as a constant. Equations (3)-(4) are then reduced to: 

 
.      (11) 

The subsequent evolution of the liner velocity can be found from the first integral of Eq. 
(11): 

 
.        (12) 

Bϕ
2 I 2 / a2

g(t) = g0
t
τ

!

"
#
$

%
&
2

a = a0 1−
g0τ

2

12a0
t
τ

"

#
$
%

&
'
4(

)
*
*

+

,
-
-

g0 =
2a0
τ 2

v0 =
g0τ
3
=
2
3
a0
τ

d 2a
dt2

= −
const
a

= −g0
a0
a
= −2 a0

2

aτ 2

a = −v0 1+ 9 ln
a0
a
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Interestingly, the velocity changes by a relatively small amount at the late stage (but still 
before the deceleration begins): for example, between the radial convergence of 10 and a 
radial convergence of 20, the velocity changes by a mere 10%.  
 One can introduce a characteristic time t* for the change of the pinch radius: 

 
t*≡ a

!a
.         (13) 

As seen from Eqs. (12)-(13), at the late stage, t* decreases approximately as a towards the 
liner collapse. We will use this circumstance in Sec. III.   
 
C. Linearization 
 
 In the linear regime the evolution of the shell can be described by the 
displacements of the material elements of the shell in the radial (r), azimuthal (ϕ) and 
axial (z) directions,  with respect to the positions of these elements on the unperturbed 
radially imploding shell (Fig. 1). We denote the radial and axial displacements as 

 and , respectively. For the azimuthal displacement it is convenient to 
characterize it by the change of the azimuthal angle of the material element. 
We emphasize that those are displacements with respect to the instantaneous position of 
the fluid element on the unperturbed (but moving) shell. With these variables, the 
continuity equation is: 

 .       (14) 

Three components of the momentum equation read as: 

         (15) 

 
∂
∂t

a2 ∂δϕ
∂t

"

#
$

%

&
'= g

∂ξr
∂ϕ

        (16) 

          (17) 

As ξr is a displacement along the radial coordinate directed outward, the positive ξr 

corresponds to the element lagging behind the imploding shell (Fig. 1).  
 The magnetic pressure perturbation has to be found by solving the 
electromagnetic equations outside the liner. [This calculation can be found, e.g., in Ref. 1; 
in order to have it readily available to the reader, we present its brief summary in 
Appendix A.] Note the difference between Eq. (16) and the corresponding Eq. (51) in 
Ref. 1: in the latter, the change of the shell radius does not cause the change of the 
azimuthal velocity, whereas our Eq. (16) accounts for this effect (which, in the absence of 
external forces, is simply azimuthal momentum conservation). [Note a typo in Eq. (51) of 
Ref. 1: there should be ξϕ , not ξr on the left-hand side. There are also typos in Eq. (40) 
where ξϕ should be replaced by ξr   and ∂ξr /∂r  by ∂ξr /∂z .] The rest of equations, up to 
notation, are the same as in Ref. 1. The aforementioned subtle change of Eq. (16) does not 
affect the evaluation of the instantaneous growth rate, i.e., it does not affect the main 

ξr (ϕ, z, t) ξz (ϕ, z, t)
δϕ(ϕ, z, t)

δµ +µ
∂δϕ
∂ϕ

+
∂ξz
∂z

"

#
$

%

&
'= 0

∂2ξr
∂t2

= g δµ
µ
−
δp
p

#

$
%

&

'
(

∂2ξz
∂t2

= g∂ξr
∂z
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result of Ref. 1. It affects however the amplitude of perturbations in the imploding liner. 
We dwell on that aspect in Sec. V.  
 
D. Vorticity and energy 
 
 From Equations (16) and (17) it follows the conservation of vorticity of the 
surface flow: 

 ,        (18) 

where dots indicate time derivatives. 
 The kinetic energy of the perturbation per unit length along the axis is:  

        (19) 

where , and the same for the other components. Taking the time derivative 
and noting that, according to Eq. (3), , we find:  

 .    (20) 

 
E. Harmonic perturbations 
 
 As the unperturbed system is axisymmetric and translationally-symmetric, one can 
seek perturbations of the form . For such a perturbation one has: 

 
,       (21) 

 
,        (22) 

 
,          (23) 

The set of equations (15) and (21)-(23) describes the stability of a thin liner with the 
effect of a radial convergence included. The most obvious effect of radial convergence is 
a growth of the azimuthal velocity, Eq. (22).  
 In a number of cases, it may be more convenient to seek the solution in a real 
form. We will use the representation  where fp is a time-dependent 
amplitude with a subscript “p” indicating that this is an amplitude of the pressure 
perturbation. An inspection of the set (15), (21)-(23) shows that perturbations of the other 
quantities will then have a sine or cosine form, with  

 , ,      (24) 

 
, ,      (25)  

with the time-dependent amplitudes being related by 

 ,        (26) 

a2 ∂δ
ϕ

∂z
−
∂δ ξz
∂ϕ

≡V = const

πµr ξr
2 + rδ ϕ( )2 + ξz2!

"
#
$ ϕ

ξr ≡ ∂ξr /∂t
µa = const

1
2
d
dt
ξr
2 + rδ ϕ( )2 + ξz2!

"
#
$ ϕ ,z

=

g δµ
µ
−
δp
p

&

'
(

)

*
+ ξr + −rrδ ϕ 2 +δ ϕ ∂ξr

∂ϕ

&

'
(

)

*
++ ξz

∂ξr
∂z

!

"
-

#

$
.

ϕ ,z

f (t)exp(ikz− imϕ )
δµ = −iµ −mδϕ + kξz( )
∂
∂t

a2 ∂δϕ
∂t

"

#
$

%

&
'= −imgξr

∂2ξz
∂t2

= ikgξr

fp(t)cos(kz−mϕ )

δµ = fµ cos(kz−mϕ ) ξr = fr cos(kz−mϕ )
δϕ = fϕ sin(kz−mϕ ) ξz = fz sin(kz−mϕ )

fµ = −µ −mfϕ + kfz( )
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 ,        (27) 

 ,         (28) 

 
.         (29) 

 The magnetic pressure perturbation can be expressed in terms of deviation of the 
liner shape from a cylinder, i.e., in terms of the function . For the harmonic 
perturbations it has a form 
 .        (30) 
The function is derived in Ref. 1 and summarized in Appendix B and is:   

 ,    (31) 

where Km(ka) is a modified Bessel function. The derivative is taken over the whole 
argument. This derivative  is negative at all values of the argument. To emphasize that the 
first term in the square brackets is positive (stabilizing) we have written instead 
of .  We also remind that the wave number k is assumed to be positive, whereas 
m can be of either sign, determining the handedness of the perturbations..  
 For the axisymmetric perturbations, m=0, one has:  

 ;  .    (32) 

For m ≥1 , ka>1 one has:  

 
Km

!Km

≈
ka

m2 + k2a2
        (33) 

The function Q vs ka for several values of is presented in Fig. 2.  
 The stability problem has been reduced to the set of ordinary differential equations 
(27)-(29) that covers, in particular, a possibility of the time-varying pressure drive and 
acceleration. In a sometimes considered reference problem, where the piston is driven by 
a pressure of a massless gas (as in Refs. 2, 4), one has simply fp=0. In Eq. (27) 
 As the system is described by three second-order differential equations (27)-(29), 
a complete set of the initial conditions should contain initial values of six quantities, fr, fϕ 
and fz and their first time derivatives. Solution for the set (27)-(29) would then 
characterize the evolution of the initial perturbation until it reaches a well-developed 
state, where the fastest-growing mode becomes strongly dominant.  
 
III. QUALITATIVE CHARACTERIZATION OF THE INSTABILITY REGIMES 
 
 The instability in the system with the varying parameters is often characterized by 
the instantaneous growth rate Γ. In our case, this instantaneous growth rate can be 
evaluated by “freezing” all the varying parameters (like a) at their instantaneous values 

d 2 fr
dt2

= g
fµ
µ
−
fp
p

"

#
$

%

&
'

d
dt

a2
dfϕ
dt

!

"
#

$

%
&=mgfr

d 2 fz
dt2

= −kgfr

ξr ϕ, z( )

δp / p =Q(m,k, t) fr
Q(m,k, t)

Q =
2

Bϕ
2 +Bz

2( )ka2
Km

!Km

mBϕ − kaBz( )
2
− kaBϕ

2
#

$
%

&

'
(

!Km

|Km / !Km |
−Km / "Km

K0

!K0

≈ ka ln 1
ka
#

$
%

&

'
(, ka <<1

K0

!K0

≈1, ka >>1

Bz / Bϕ
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and then seeking for the solution evolving as exp(Γt). The set of equations (26)-(29) 
yields the following equation for Γ:  

 D Γ, t( ) ≡ Γ4 + gQΓ2 − g
2

a2
m2 + k2a2( ) = 0 .     (34) 

The solution to this equation is: 

 Γ1,2
2 =

g
2
−Q± Q2 + 4(k2 +m2 / a2 )#
$

%
&       (35) 

For the subscript of “1” one of the two roots corresponds to exponential growth and the 
other to exponential decay; for the subscript “2” there are two oscillatory roots (analogs 
of sine and cosine solutions).  
 A rough estimate of the instantaneous growth rate is 
 Γ ~ qg ,         (36) 
where 

 q = k2 + m
2

a2
.         (37) 

 One has, however, to remember that the concept of instantaneous growth rate  can 
be used only if the change of the growth rate during one e-folding time 1/Γ is smaller than 
the growth rate itself, i.e., only if the condition 

 
1
Γ
dΓ
dt

<< Γ          (38) 

holds. This regime can also be characterized by the dimensionless parameter ε: 

 ε =
1
Γ2

dΓ
dt

<<1.         (39) 

 Condition (38) is certainly not satisfied at an early stage of the implosion, where g 
varies as t2: the left-hand side of Eq. (38) scales then as 1/t, whereas the right-hand side 
scales as t. Therefore, the perturbation growth at an early stage cannot be characterized by 
the concept of an instantaneous growth rate and has to be described by a complete set of 
Eqs. (26)-(29) with a=const but g varying in time.  A solution of this problem is presented 
in Sec. IV.  
 For higher wave-numbers q, condition (38) may be fulfilled at the later part of the 
latent phase, whereas for lower wave-numbers it may be reached at the stage where the 
acceleration begins to increase due to the decrease of a.  This second stage, where the 
condition (38) is satisfied, can be described by the WKB (Wentzel-Kramers-Brillouin) 
approach (see, e.g. Ref. 24), which yields not only the exponentiation factor, E0 = Γdt∫ , 
but also a pre-exponential multiplier which can be quite important for the converging 
liner: knowing this factor, one can match the WKB solution to the solution for the 
“latent” stage and thereby directly relate the WKB solution to the initial perturbations. 
This WKB analysis is presented in Sec. V.  
 Surprisingly, for some range of the wave numbers the acceleration (g) drive of the 
MRT instability may again become small. Indeed, according to Eqs. (13) and (36), 
condition (38) may break down again for small a, now due to the shortened (~a) 
implosion time-scale t*, Eq. (13). In other words, the effect of the liner acceleration, g,  at 
this (third) stage of the implosion becomes unimportant. This does not mean that the 
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perturbations do not grow: they continue to evolve ballistically, with the acceleration of 
each fluid element being negligible. As the liner radius is already relatively small, this 
“ballistic” deformation can be very significant. This stage of the implosion is described in 
Sec. VI. 
 Finally, if the shell had not lost its integrity at the previous three stages, a reaction 
of the compressed fuel and magnetic field inside the liner become dominant over the 
external compression force, and the liner decelerates and rebounds. The transition to this 
fourth stage occurs very near the point of the maximum compression: it suffices to say 
that the magnetic pressure inside the liner grows as 1/a4

, so that the change of the radius 
from 1.5 of the minimum value to the minimum value leads to the increase of the pressure 
by a factor of 5. We do not attempt to cover this final stage by our analysis, as it would 
require a description of the plasma and magnetic field in a non-trivial setting, which 
constitutes a big project of its own. We direct the reader to the papers [7-9] where this 
state was considered, and Ref. [25] where the back reaction of a plasma with embedded 
magnetic field on the liner stability was assessed in the simple planar geometry. 
  
IV. AN EARLY STAGE OF THE INSTABILITY 
 
A. Equations with a=const 
 
 A salient feature of the liner implosions is the presence of a long “latent phase” 
when the current gradually rises to high values, but the liner does not yet move by any 
significant distance, so that . This feature is a result of the structure of 
the governing equation (3): the displacement is a result of two integrations over the time, 
so that it remains small even after the acceleration and growth rates have already reached 
high values. A nice example of the exact solution of Eq. (3) for the bell-shaped current 
profile is presented in Ref. 23.  
 This latent phase is the one where the axial magnetic field may still be 
dynamically-significant compared to the azimuthal field. The exponentiation factor of the 
perturbations at this stage determines the “initial state” for the instability at the later 
stages, after the liner eventually “takes off” and rapidly implodes.  
 At this initial stage (which, as we have mentioned in Sec. IIA, occupies ~ 70-80 % 
of the total duration of the liner implosion, see Refs. 7 and 23, the radius of the shell in 
Eq. (28) can be considered as a constant. An unperturbed areal mass density µ is also 
constant. This allows one to reduce the set of equations (26)-(29) to: 
 ,        (40) 

 ,       (41) 

 ,         (42) 

 ,          (43) 
with a0 being the initial shell radius and µ0 being the initial surface mass density. Note 
that the right-hand side of these equations depends explicitly on time, via the function g(t) 
that changes as I2

. The coefficient Q does not depend on time provided Bz is proportional 

Δa ≡ a0 − a(t)<<1

fµ = −µ0 −mfϕ + kfz( )
fr = −g −mfϕ + kfz +Qfr"# $%
fϕ = m / a0

2( )gfr
fz = −gkfr
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to . Otherwise, Q may also depend on time. As before, the solution is uniquely 
determined by the initial values of the variables fr, fϕ and fz and their derivatives.  
 By some simple manipulations, one can eliminate fϕ and fz and reduce this set of 
equations to two coupled second-order equations for fr and fm :  

          (44) 

 ,         (45) 

 
plus one separate equation for the quantity   : 

           (46) 
related to vorticity, Eq. (18), by . 
 The set of three second-order differential equations (44)-(46) allows one to find a 
solution in terms of the initial values of the variables , and U, and their first 
derivatives. Note that these variables are uniquely related to the variables , and , 
so that the solution of the set (44)-(46) immediately yields the solution of the set (40)-
(43). Initially, the solution is certainly non-WKB; however, later in the pulse, for t 
approaching τ (but a being still almost constant) the solution may enter the WKB regime. 
This allows one to relate the amplitude of the amplitude of the WKB solution to the initial 
(t=0) perturbations by matching the solutions in the overlap domain.   
 
B. Solution of the initial value problem 
 
 We consider in some detail the solution of the set (44)-(46) for the case where the 
parameter Q is constant, whereas the acceleration g may vary with time. This model 
corresponds to the situation where the axial field near the surface varies in concert wth 
the azimuthal field, , with α=const. The acceleration g at this stage scales 
as a square of the driving current.  
 We will show below that the set of equations (44)-(46) allows one to obtain a 
general description of the instability for arbitrary initial conditions and arbitrary function 
g(t). Let us look for the solution of the form  

           (47) 

where κ is some constant independent of time that will be found shortly. Substituting it to 
equations (44)-(45), one finds the following algebraic equation for the eigenvalues of κ: 

        (48) 

There are two solutions to this equation, directly related to the formally defined 
instantaneous growth rate (35): 

Bϕ

fr = g
fµ
µ0

−Qfr
"

#
$

%

&
'

fµ
µ0

= g m2

a0
2 + k

2
!

"
#

$

%
& fr

U ≡ ka0
2 fϕ +mfz

U = 0
U =V

fr fµ
fr fϕ fz

Bz (t) =αBϕ (t)

fr =κ
fµ
µ0

m2

a0
2 + k

2
!

"
#

$

%
&κ 2 +Qκ −1= 0



 11 

 

 κ1,2 =
Γ1,2
2

g k2 +m2 / a0
2( )

 .       (49) 

Remarkably,  do not depend on time, although g does. For each of them the system 
(44)-(46) is reduced to a single second-order equation,  

         (50) 

with  related to fr by Eq. (40). For the positive sign of , i.e., for = , Eq. (50) has 
two solutions, an exponentially growing  and an exponentially decaying ones. For , 
i.e., for , there are two oscillatory solutions analogous to sine and cosine solutions.  
 We will designate these solutions as Y1 and Z1 for and Y2 and Z2 for . 
We then arrive at the following general solution of the problem: 

      (51) 

where A-D are arbitrary constants. For the initial value problem, where the values of 
  and  at t=0 are specified, these constants are determined from the set of four 

linear equations for A-D.  
 For the problem under consideration, it is convenient to choose a specific set of 
the basis functions. For the solutions corresponding to κ=κ1, we choose the exponentially-
growing solution with a zero derivative at t=0; we choose an arbitrary multiplier so as to 
make the solution equal to 1 at t=0. For exponentially decaying solution we choose the 
multiplier so as to make this solution also equal to 1 at t=0. So, we have  
       (52) 

For the oscillating solutions corresponding to κ=κ2, we choose one of them to be equal to 
1 and have a zero derivative at t=0; for the second solution we choose the one that is zero 
at t=0. We adjust the coefficient in such a way as to make the derivative of this solution to 
be equal to the derivative of Z1, In other words, the second set of eigenfunctions has the 
properties:  
     (53) 
An example of the eigenfunctions for the parabolic temporal dependence of the 
acceleration is presented in Appendix B.  
 The choice (52), (53) of the eigenfunctions allows one to write a convenient 
solution of the initial value problem in a remarkably symmetric form, in which there is a 
separation of the contributions of the initial displacements and velocities. Indeed, from 
Eqs. (51), we find: 

 
  ,    (54)  

 
  .    (55) 

κ1,2

fr = g
m2

a0
2 + k

2
!

"
#

$

%
&κ fr

fµ κ κ κ1
κ < 0

κ =κ2
κ =κ1 κ =κ2

fr = AY1 +BZ1 +CY2 +DZ2;
κ1κ2 fµ /µ0 =κ2 AY1 +BZ1( )+κ1 CY2 +DZ2( )

fr, fµ fr, fµ

Y1(0) =1; Y1(0) = 0; Z1(0) =1

Y2 (0) =1; Y2 (0) = 0; Z2 (0) = 0; Z2 (0) = Z1(0)

A =
κ1 fr0 −κ1κ2

fµ0
µ0

κ1 −κ2
; C = −

κ2 fr0 −κ1κ2
fµ0
µ0

κ1 −κ2

B =
κ1 fr0 −κ1κ2

fµ0
µ0

κ1 −κ2( ) Z1(0)
; D = −

κ2 fr0 −κ1κ2
fµ0
µ0

κ1 −κ2( ) Z1(0)
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The most common (and, perhaps, relevant) formulation of the initial value ptoblem is the 
one where at t=0 there exist some static perturbations, i.e., initial values of  and are 
non-zero, while their time derivatives are zero. Then one has to set B=D=0, whereas the 
other two constants, A and C, are related to the initial values by Eq. (54). 
 Depending on the initial values of fr and fµ there may be some period when the 
surface oscillates, before the exponentially growing mode takes over. There is also a 
special type of perturbations where , for which the mode of exponential 
growth does not show up.  If this condition is not satisfied (as is usually a case), then the 
exponentially growing solution becomes dominant, and fr and fµ follow Eqs. (51) where 
only terms proportional to Y1 have to be retained.  

 Now we turn to Eq. (46). It shows that the quantity is constant in 

time. This quantity is the velocity component along the line of a constant phase and 
describes a vortex part of the velocity field, the one that does not perturb the density. This 
component is uncoupled from the other equations and does not affect the development of 
the instability. Without loss of generality, one can therefore assume that both and  
are simply zero.  In other words, we can limit ourselves to considering only perturbations 
for which  
         (56) 
On the other hand, Eq. (40) shows that 

 ,         (57) 

where  is a known function of time, Eq. (51). Accordingly, Eqs. (56) and (57) define 
the temporal dependence of the two other components of the displacement vector: 

         (58) 

          (59) 

 
C. Relation to machined perturbations 
 
 In the experiments on liner stability, the perturbations are usually machined by 
removing material from the liner surface. In a thin-shell model this means the presence of 
a correlation between components fr and  of initial perturbations. Consider for example 
perturbation machined to the outer surface of a liner, Fig. 3. The average unperturbed 
surface would be situated at the distance  from the initial surface. The surface 
density variation will then be  

 .          (60) 

The amplitude of the radial displacement of a liner will be . In other words, the 
initial surface mass density perturbation and initial waviness of the liner will be related to 
each other: 

fr fµ

κ2 fµ0 = µ0 fr0

U = fz +
ka0
m
a0 fϕ

U U

fϕ = −mfz / ka0
2

mfϕ − kfz =
fµ (t)
µ0

fµ (t)

fϕ (t) =
mfµ (t) /µ0
m2 + k2a0

2

fz (t) = −
ka0

2 fµ (t) /µ0
m2 + k2a0

2

fµ

ζ / 2

fµ0 =
µ0
2h
ζ

fr0 =ζ / 4
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          (61) 

We neglect here a second-order correction related to the change of the average thickness 
caused by the removal of some material. 
 What is remarkable here is that Eq. (61) that relates to contains the shell 
thickness h, which is assumed to be small both compared to the shell radius a and an 
inverse wave number k-1. When one substitutes this result into Eq. (54), one sees that the 
initial perturbation of µ strongly dominates the effect of initial rippling, by a factor of 
roughly 1/kh. This basically means that the subsequent evolution of the perturbations is 
almost entirely caused by the initial mass density perturbation.  
 In the spirit of a thin-shell model, one can attribute the initial surface mass-density 
perturbation to the initial displacement of the material in the z and ϕ directions, by Eqs. 
(58) and (59). Note that this discussion relates to pre-machined perturbations with any m 
and k satisfying the thin-shell model, k<1/h, m/a<1/h.  
 If one neglects the initial fr in Eqs. (46), the following solution emerge3:  

        (62) 

with related to the initial depth of the machined material (Fig. 4) by Eq. (53). 
Specific examples are presented in the next section.  
 For a developed instability the first, exponentially growing terms in Eq. (47) 
become dominant. This leads to a simple relation between  and  at this stage:  
          (63) 
At this developed stage, the perturbation of the shape of the shell would look as shown in 
Fig. 4, with the ripples at the outer side of the liner being larger than those on the inner 
side. This feature of our solution agrees with the earlier detailed numerical simulations of 
Ref. 7, see Fig. 9 a of that paper.  
 The velocity perturbations during the developed stage of the instability are related 
to each other by equations that follow from Eqs (58), (59) and (63): 

 fϕ =
m

m2 + k2a0
2( )κ1

fr; fz = −
ka0

2

m2 + k2a0
2( )κ1

fr .     (64) 

 The random, not deliberately machined, perturbations are also dominated by the 
mass-density perturbations that contain the additional large parameter of the inverse shell 
thickness compared to the surface waviness. Initially present imperfections in the 
structure of the material also contribute mostly to the density perturbations. So, Eqs. (62) 
are relevant for this case as well. 
  
D. Initial value problem for the parabolic g(t)  
 
 In this section we analyze in more detail a particular, parabolic, shape of the g(t) 
function at an early stage of the implosion, Eq. (7).  For the parabolic model, the shell 

fr0 =
h
2
fµ0
µ0

fr0 fµ0

fr = −
κ1κ2
κ1 −κ2

fµ0
µ0

Y1 −Y2( );

fµ = fµ0
−κ2Y1 +κ1Y2( )
κ1 −κ2

,

fµ0 ζ

fr fµ
fr =κ1 fµ /µ0
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radius changes according to Eq. (8). We consider the times t ≤ τ , for which the shell 
radius can be considered as constant, whereas the growth of the perturbations can be 
significant, 
 Our governing equation (50) can then be rewritten as: 

 ,         (65) 

where  

 t̂ = t
τ
, S1,2 = 2 m2 + k2a0

2( )κ1,2a0
= −Qa0 ± Qa0( )2 + 4 m2 + k2a0

2( ) .  (66) 

The dimensionless parameter S1 is positive, whereas S2 is negative. The basis functions 
Y1,2, Z1,2 are presented in Appendix B.  
  Consider this solution for the case of machined perturbations of Sec. C. In this 
case the surface ripple fr is determined by the first of Eqs. (55) . We have: 

   
fr
a0
=
ζ
2h

×
Y1 S1

1/4t̂( )−Y2 S2
1/4 t̂( )

Qa0( )2 + 4 m2 + k2a0
2( )

     (67) 

and 

  
fµ
µ0

=
ζ
4h

×
−S2Y1 S1

1/4t̂( )+ S1Y2 S2
1/4 t̂( )

Qa0( )2 + 4 m2 + k2a0
2( )

     (68) 

 As a measure of the perturbation growth at this stage we use the ratio 
:  

  H1 ≡
fµ t = τ( )
fµ0

=
−S2Y1 S1

1/4( )+ S1Y2 | S2 |1/4( )
−S2 + S1

     (69) 

As an illustration, we plot this ratio as a finction of the wave number for the case of 
axisymmetric perturbations (m=0) with Bz=0 (Fig. 5).  One sees that the growth is modest, 
even for ka=10. Given the low acceleration at the beginning of the implosion (g~t2), this 
is not surprising. Contributing to this modest growth is also the absence of initial velocity: 
the machined perturbations start growing from the zero-velocity state. and even if the 
first, exponentially growing term takes over, there still remains a factor 
| S2 | / | S2 |+S1( ) <1  in font of it. Thus factor holds a memory of the initial condition.  
 We emphasize that  this stage cannot be described in terms of an instantaneous 
growth factor, due to the violation of the applicability conditions of the WKB 
approximation early in the pulse. In the model of the instantaneous growth rate the 
perturbation growth towards the end of the latent phase is simply 

  H2 = exp Γdt
0

τ

∫
#

$
%

&

'
(= exp S1 / 2( )       (70)  

As an illustration, we compare this function with that of Eq. (69)  or axisymmetric 
perturbations (m=0). Note that the function (70) has been multiplied by a factor of 0.2 in 
order to fit the same plot as the other curves in Fig. 5. One sees a significant difference 
between the function H2 of Eq.(70)  and function H1 of Eq. (69).  This indicates the need 
to properly account for the slow part of the growth (at early times) and for the correct 

d 2 fr
dt 2

= S1,2t
2 fr

fµ (t̂ =1) / fµ0
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accounting for the initial conditions. The procedure that would allow one to correctly 
match the exact solution early in the pulse with the WKB solution at the later stage and is 
described in Sec. V.  
 Despite the modest perturbation growth, the first stage is important in that it 
gradually transitions to the WKB stage, eventually selecting only the growing mode with 
a correct amplitude determined by the initial conditions. The transition to this regime of 
an exponential growth means that the ratio fr/fµ  becomes constant determined by Eq. (63). 
In other words, the transition occurs when the function  

 H3≡
fr t̂ =1( )

κ1 fµ t̂ =1( ) /µ0
=

Y1(S1
1/4 )−Y2 (| S2 |

1/4 )
Y1(S1

1/4 )+ (S1 / | S2 |)Y2 (| S2 |
1/4 )

    (71) 

becomes close to 1 (in other words, the non-exponential term becomes negligible) at 
large-enough k’s .The plot of this function is presented in Fig. 5 (magenta curve). One 
sees that  the transition occurs at ka>10, when the parameter S1 exceeds, roughly, 10. For 
smaller ka, in order to match the exact solution and the WKB solution, one has to follow 
an exact solution into domain t>τ.  
 Now we proceed to the analysis of the growth of helical perturbations during the 
latent phase. This can be done based on Eq. (62) and is illustrated by Fig. 6, where the 
parameter  S1 is shown as a function of ka0 for several values of m and Bz / Bϕ . One can 
clearly see several trends. First, the axisymmetric, m=0, perturbations (Fig. 6a) grow 
slower for finite axial field compared to the case of no field (red curve). Second, 
perturbations with finite m grow faster in the presence of the axial field than in the 
absence of it (Fig. 6, b,c). The growth rate becomes somewhat higher than the growth-rate 
of m=0 perturbations in the absence of the axial field. This happens over a wide range of 
ka and does not require fulfillment of the resonant condition ka =mBϕ / Bz Third, the 
perturbations with a “wrong” chirality (m<0) shown with the dashed curves are distinctly 
slower than the perturbations with a “correct” chirality (m>0). Again, this happens in a 
broad range of k, irrespectively to whether the resonant condition is satisfied or not.  
 For larger k’s the parameter S1 exceeds the values ~ 10-15 needed for the 
transition to a WKB regime during the latent stage. For smaller k this transition, however, 
does not happen and, in order to correctly relate the amplitude of the perturbation to the 
initial conditions, one has to solve a full-blown set of equations (44)-(46). On the other 
hand, this longer-wavelength perturbations grow slower, anyway, and probably have a 
weaker effect. 
 
V. REGIME OF FAST PERTURBATION GROWTH 
 
A. WKB equations 
 
 The regime that we consider now is that where condition (38) is satisfied. It can be 
overlapping with the end of the first phase. In the assessing of the WKB approximation it 
is convenient to reduce the set of equations (26)-(29) to a single equation for fr. 
Eliminating fµ from Eqs. (26) and (27) and using Eq. (30), one obtains: 

 .       (72) 
1
g
d 2 fr
dt2

=mfϕ − kfz −Qfr
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The quantities and  are related by the vorticity equation (18). As we consider 
perturbations with the zero initial velocities, one has  
 .        (73) 
One can also note that this relation will approximately hold at the developed stage of the 
instability even if the initial velocity perturbations were non-zero. Therefore, taking the 
first derivative of Eq. (72) and eliminating by Eq. (73), one finds: 

       (74) 

Taking one more derivative and using Eq. (29), one finds a single equation for fr: 

       (75) 

 Now we proceed to the derivation of the WKB equations. We seek a solution of 
this equation (75) in the form 
 fr = e

E           (76) 
where E is the eikonal. The instantaneous growth rate is  
 Γ = !E           (77) 
so that Eq. (39) acquires the form: 
 !!E = ε !E 2          (78) 
The slowness of variation of the growth rate Γ determined by Eq. (34) means that the 
parameters g, a and Q that determine the growth rate are varying slowly: 
 g / g ~ εΓ; a / a ~ εΓ; Q /Q ~ εΓ.       (79) 

Following the standard WKB approach [2], we present !E  as  
 !E = !E0 + !E1 +...         (80) 
where !E0 is simply an instantaneous growth rate, Eq. (25), whereas !E1 is a correction of 
order ε.   
 
B. Zeroth-order WKB and exponentiation factors 
 
 As mentioned in Sec. III, the stage of the fast perturbation growth corresponds to 
an almost constant axial current and the scaling g ≈ g0 (a0 / a) . The axial drive magnetic 
field at this stage is insignificant (see Sec. III), and  

 Q =
2
a

m2

m2 + k2a2
−1

"

#
$

%

&
'  ,        (81) 

so that  

 
Γ =

g
a

1− m2

m2 + k2a2
#

$
%

&

'
(+ 1− m2

m2 + k2a2
#

$
%

&

'
(

2

+m2 + k2a2   (82)  

Note that, as g varies as 1/a, the growth rate for given values of m and k depends only on 
a. Using this circumstance, one can present the growth factor during the phase 2 as  

fϕ fr

ka2 fϕ +mfz = 0

fϕ
ka2

m2 + k2a2
d
dt

1
g
d 2 fr
dt2

+Qfr
!

"
#

$

%
&= − fz

d
dt

a2

m2 + k2a2
d
dt

1
g
d 2 fr
dt2

+Qfr
!

"
#

$

%
&

'

(
)

*

+
,= gfr
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 E0 = Γd "t =
τ

t

∫ Γ(a)da
!aa

a0

∫ =
Γ(a)da

v0 1+ 9 ln a0 / a( )a

a0

∫  ,    (83) 

where we used Eq. (12) for the liner velocity.  Using Eqs. (81)-(82) , one can represent E0 
as a function of the dimensionless wave number ka0, m, and instantaneous radial 
convergence C: 
 E0 = E0 ka0,m,C( ) ; C ≡ a0 / a       (84) 

The evolution of the perturbation in this approximation is described as eE0 . 
 We will not write relatively lengthy intermediate equations and present only the 
resulting graphs of E0 vs. C for several values of ka0 and m (Fig. 7). One sees that indeed 
for a broad range of parameters, the rapid increase of the growth factor is followed by the 
stage of a very slow growth, as mentioned in Sec. III. Note, however, that even a further 
“ballistic” (non-exponential) growth of perturbations may cause significant deformation 
of the liner at the late stage of the implosion. This issue will be considered in Sec. VI. 
 
C. First-order correction and a pre-exponential factor 
 
 Consider now a first-order correction. The smallness of this correction means that 
E1<<E0 but not necessarily that E1<<1 [24]. Accounting for this correction leads to an 
appearance of significant pre-exponential factors in the expression fr = const × e

E0 . On 
the other hand, the second-order correction is indeed smaller than unity [24] and is 
therefore of less interest. We will consistently neglect second-order terms when 
performing differentiations in Eq. (75), whereas the zeroth and first order terms will be 
retained. The corresponding calculations are presented in Appendix C. Here we discuss 
two particular examples.  
 First we consider axisymmetric, short-wavelength perturbations, k>>a, m=0. In 
this case q (defined by Eq. (37)) is constant, q=k. For k>>a the growth-rate is simply 
Γ = kg . We also note that |Q|<<k. With these observations, we obtain from Eq. (C11): 

 !E1 = −
!g
2g

          (85) 

or 

 eE0+E1 = const
g
e Γdt∫         (86) 

As at the second stage of the implosion g~1/a, the pre-exponential factor is decreasing as 
a square root of the convergence, thereby somewhat reducing the amplitude of the 
perturbations. 
 The second example is concerned with a short-wavelength flute mode, k=0, m>>1. 
In this case 

 q2 = m
2

a2
; Qg = 2

m g
a
; Γ2 =

m g
a

2 −1( ) .     (87) 

Noting that g~1/a, one gets from Eq. (C.11): 

 
!E1 = −

3 2− 2( ) !g
8g

        (88) 
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so that the pre-exponent scales as approximately (1/C)0.23.  It is substantial to correctly 
account for for the angular momentum conservation in order to find the exponent 0.23 in 
this dependence. 
 
VI BALLISTIC PERTURBATION GROWTH 
 
A. Transition to the third stage of the implosion 
 
 In the discussion of Sec. III and V we arrived at a paradoxical conclusion that the 
perturbations stop growing exponentially by the end of the second stage. More accurately, 
the perturbation e-folding time 1/Γ becomes longer than the characteristic implosion time 
t*, Eq. (13). This is a feature of the Z-pinch, with its unique relation between the drive 
pressure and the pinch radius (at the stage of an almost constant current). The implosion, 
in some sense, remains smooth till the very end, with the liner just coasting to the axis at 
the speed acquired and perturbations imposed at the earlier stages. 
 The absence of the exponential growth at the late stage does not mean that the 
perturbations are unimportant: they just do not grow exponentially, but the presence of the 
velocity perturbations leads to the further, ballistic, growth of the ripples.  
 We again emphasize that do not consider the very late stage of the implosion, 
where the plasma pressure inside the liner builds up and causes deceleration of the liner. 
At this stage, as well as at the following rebound, the instability of the inner surface 
becomes dominant. This stage goes beyond our thin-shell model and is not considered 
here. We note, however, that perturbations of the inner surface that appeared at the earlier 
stage serve as a seed for this late-stage instability.  
 
B. Liner deformations at the ballistic stage 
 
 In this section we consider an evolution of perturbations at the stage where the 
exponential growth becomes unimportant and one can therefore drop the terms 
proportional to g in the right-hand side of equations (27)-(29). The convergence at which 
this transition occurs depends on m and k, see Sec. VB.  The set of linear equations 
becomes then: 

         (89) 

Note that the velocity of in-surface azimuthal flow continues to grow as 1/a despite the 
absence of the pressure drive.  
 Remarkably, this “coasting stage” where the role of acceleration becomes 
negligible, can be fully described even if the perturbations become nonlinear due to the 
combination of decreasing radius and rapid ballistic growth of the displacements. In 
particular, the radial displacement, according to the first of the equations (89), grows 
linearly with time.  
 From this point on, we drop the assumption of the smallness of the shell 
deformation. We describe the non-linear evolution of the shell in the Lagrangian 
coordinates, marking each fluid element by its initial coordinates r0, ϕ0 and z0. We 

fr = 0

d / dt a2 fϕ( ) = 0
fz = 0
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assume that this coasting regime begins when the shell is still weakly deformed. We, 
however, anticipate that eventually strong deformation will appear due to further 
departures of the fluid elements from their initial positions, superposed on the shrinking 
average radius of the shell and use the exact equations (not linearized) for the dynamics 
of the fluid elements. In other words, we use the following set of equations: 

  

   

 r = a*+v* t + !frt cosS0( )
2
+ a* !fϕt sinS0( )

2
 ;    (90) 

 r2 !ϕ = a*2 !fϕ sinS0;         (91) 

  z = z0 + !fzt sinS0         (92) 
where 
 S0 = kz0 −mϕ0          (93)   is 
the phase of the mode, and a* and v* designate the radius and velocity of the shell at the 
moment where the coasting model becomes correct. The time t is measured from this 
point. The collapse of a perfectly cylindrical shell occurs at t=tcollapse=-a*/v* (the velocity 
v* is negative). The quantities , and describe the components of velocity 
perturbations of the shell elements at t=0. These perturbations have grown from some 
small initial values and, although are still small at t=0, but, as we show below, they 
become important during the further implosion. Substituting r from Eq. (90) to Eq. (91)  
and performing integration, one finds:  

 ϕ =ϕ0 +
a* !fϕt sinS0

a*+v* t + !frt cosS0
.       (94) 

As can be seen from the subsequent results, the last term under the square root in Eq. (90) 
is small and we have neglected it in Eq. (94). In the subsequent equations we also use this 
simplified form of Eq. (90):  
 r = a*+v* t + !frt cosS0 .       (95) 
 It is easy to account for the presence of initial non-zero deviations from the purely 
cylindrical shape at t=0. (i.e. the finiteness of fr , fϕ , fz . However, as they are small, 
their role will be insignificant compared to the accumulated effect caused by the presence 
of velocity perturbations, which cause the growth of deformations with time. So, we stick 
to the mapping defined by Eqs. (92), (94) and (95). 
 In the further discussion, we normalize r to a* , z to 1/k, and t to tcollapse, leaving 
ϕ unchanged: 
 r̂ = r / a*; ϕ̂ =ϕ; ẑ = kz; t̂ = t | v* | /a      (96) 

With that, the mapping acquires the form: 

 

r̂ =1− t̂ +wrt̂ cosS0;

ϕ̂ = ϕ̂0 +
wϕ t̂ sinS0

1− t̂ +wrt̂ cosS0
;

ẑ = ẑ0 + !fzt̂ sinS0,

       (97) 

where  

 wr =
!fr
v*
; wϕ =

!fϕa*
v*

; wz =
!fzka*
v*

.      (98) 

fr fϕ fz
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For definiteness, we assume below that the amplitude wr of the radial velocity 
perturbation is positive. One can always reach this by the appropriate shift of the phase .  
In other words, the perturbations with S0=0, given the aforementioned sign convention, 
are lagging behind the “average” shell. 
 For the given values of the initial velocity perturbations (98), Eq. (97) describes a 
mapping of the initially cylindrical liner into a distorted one, with the shape depending on 
t̂ . The liner shape at a given t̂  is characterized by the function r̂(ϕ̂, ẑ, t̂ ) which is 
determined in a parametric form by Eqs. (97), with ϕ̂0 and ẑ0  being parameters.  
  
C Formation of cusps 
 
 In order for the transformation fromϕ̂0 and ẑ0 to ϕ̂ and ẑ  to be non-singular, its 
Jacobian must be non-zero.  

 J ≡ D(ẑ,ϕ̂ )
D(ẑ0,ϕ̂0 )

≠ 0          (98)  

A simple calculation shows that  

 J =
1− t̂ +wrt cosS0( )

2
1+wzt̂ cosS0( )−mwϕ t̂ (1− t̂ )cosS0 +wrt̂"# $%

1− t̂ +wrt̂ cosS0( )
2    (99) 

Initially, at small t̂ , the Jacobian is near unity, but later in time there may appear points 
where J becomes small or zero. One can show that this first happens near the points 
where S0=0. The time when this happens should of course be less than the time when the 
shell implodes on the axis. These assessment depends, of course, on the velocity 
perturbations at t̂ =0. The latter depend on the magnitude of the initial perturbations and 
cannot be predicted from the first principles. So, we will just make a scan over the 
amplitude of the radial perturbation, wr. With that, one has to remember that, for a given 
wr, the amplitude of the other two perturbations, wϕ  and wz are not arbitrary, as they are 
related to wr by equations (64) for a=a*. We have, accordingly,  

 wϕ = wr
m

(Qa / 2)2 +m2 + k2a2 − (Qa / 2)
;     (100) 

 wz = −wr
k2a2

(Qa / 2)2 +m2 + k2a2 − (Qa / 2)
 .     (101) 

 We start the assessment of the formation of singularities from the simplest case of 
purely axisymmetric perturbations, m=0, where only Eqs. (92) and (95) are needed. In 
this case, the condition for the singularity formation becomes simply: 
 1+wzt̂ cosS0 =0        (102)  
We see that, indeed, the singularities are first formed for S0=0 (remember that wz<0 for 
wr>0). In other words, the singularity is formed near the area that has the strongest lag 
with respect to the “average” shell. The condition that the leading part of the shell (S0=π) 
has not reached the axis means that (see Eq.(95)):  

 t̂ < 1
1+wr          

(103) 
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The consistency condition (singularity is formed before a part of the shell implodes) reads 
then as 
 −wz >1+wr .           (104) 
Accounting for Eq. (101) and using Eq. (81) for Q, one finds that for ka>1 the 
singularities are formed at relatively small amplitudes of the radial velocity perturbations: 
wr>0.3 for ka=2, wr>0.28 for ka=3, and wr>0.22 for ka=4. Fig. 8a shows the cross-section 
of the liner at the time when the cusps have just formed. One can check that near the cusp 
points, the radius changes according to equation r0 − r∝ z− z0

2/3 , where the subscript “0” 
corresponds to the tip of the cusp. Note that the cusp points in the outward direction, this 
being consistent with the Ott’s analysis of the planar case (Ref. 2) and detailed numerical 
simulations of Ref. 7 (see Fig. 9 of that paper).  As was pointed out to the author by A.L. 
Velikovich, the idea of cusp formation in the wave motion has been described as early as 
1802 [28]. This two-century old study is summarized in the Lamb’s “Hydrodynamics” 
[29], see Sec. 251 of that book. 
 At later times, our mapping fails. An interesting conjecture was made in Ref. 2, 
where it was hypothesized that the shell material will continue flowing into the cusp 
leading to formation of a jet-like structure, see Fig. 4 in Ref. 2 and Fig.1 in Ref. 4. The 
formation of cusps seems to be identified in experiments [28-30], although for the 
wavelengths shorter than those covered by the thin-shell theory. Cusps may have 
significant effect on the efficiency of the fuel compression in fusion applications of Z-
pinches. The analysis of this part of the problem goes, however, well beyond the scope of 
our study.  
 Another interesting example is that of a flute-like perturbation with k=0, m ≠ 0 . In 
this case one has to set wz=0 in Eq. (98). This leads to the following equation that 
determines the cusp formation: 
 1− t̂ +wrt̂ −mwϕ t̂ = 0         (105)  

For k=0 one has Q=|m|/2a, so that, according to Eq. (101),  wϕ =|m |wr / 2 −1( ) .  The 

time when the cusp is formed is then 

 t̂ = 1

1+wr 2 + |m |−1
2 −1

"

#
$

%

&
'

       (106) 

It is universally shorter than the time (103) for the shell collapse on axis. We see that for 
the purely azimuthal perturbations (k=0) the cusp structures are formed more easily than 
for the axisymmetric modes (m=0), due to enhancement of the azimuthal velocity by 
virtue of the vorticity conservation. An example is shown in Fig. 8b. For the helical 
perurbations the cusps are formed along the line of a constant phase S0=0. A three-
dimensional rendition of this structure is shown in Fig. 9a. 
 The mapping (90)-(92) can be generalized to the case where perturbation is caused 
by multiple modes. In this case, singularities do not necessarily appear along the lines – 
they can be formed in the isolated points and the orientation of the cusps (inward vs. 
outward) becomes dependent on the amplitudes and mutual phasing of the modes. In 
principle, other types of singularities, in particular, folds (e.g. Ref. 31) may form. A three-
dimensional image of the structure produced by the mixture of two modes is shown in 
Fig. 9b. We leave a general analysis of the shapes of these singularities for a future work. 
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VII SUMMARY AND DISCUSSION 
 
 A thin-shell model of the liner implosion is applicable to perturbations with the 
wave numbers smaller than the shell inverse thickness (i.e, with the wavelength longer 
than a few thicknesses). With this limitation, the model allows one to obtain a 
surprisingly complete and detailed description of the evolution of broad range of 
perturbations.  
 Within this model we identified four qualitatively different stages of the 
implosion: a “cold start”, with the barely moving liner but perturbations already growing; 
the stage of a rapid acceleration and intense exponential perturbation growth; the stage of 
ballistic non-linear deformations and formation of singularities; the stage of stagnation 
and rebound (not covered by our analysis).   
 The first phase is interesting in that the presence of the axial driving field can be 
important during it, whereas at the later stages the axial field is completely overwhelmed 
by the orders of magnitude higher azimuthal field. At an early stage, however, the axial 
field can affect the onset of the helical perturbations that seed the further implosion. 
Another interesting feature of the first phase is a relatively slow growth of the pre-
machined surface perturbations, especially if they are imposed on the outer surface only. 
 For the second phase, a consistent set of WKB equations has been derived. This 
stage (as well as the following one) is characterized by a rapid decrease of the pinch 
radius. Due to that, the vorticity conservation becomes important for the evolution of non-
axisymmetric perturbations. We go beyond the zeroth-order of the WKB and derive the 
expression of the pre-exponential factor that affects significantly the perturbation 
amplitude at higher convergences. 
 Somewhat paradoxically, the exponential growth becomes less important at the 
later, third stage of the implosion. This happens not due to the decrease of the growth rate 
(that actually increases) but rather due to a shortening of the implosion time, . The 
absence of the exponential growth does not mean that the liner deformations stop to grow, 
but the growth is now mainly determined by the inertial (ballistic) motion of the elements 
of the shell, generated at the previous stage. By neglecting the acceleration drive, one 
arrives at a mapping that describes the non-linear evolution of the shell at this stage. For 
single-mode perturbations, the cusp structures are formed. An arbitrary mixture of the 
modes is also covered by this mapping. 
 One has to remember that all these results refer only to a thin liner model and do 
not cover the smaller-scale perturbations. Still, the insights developed in the present work 
may help one to get a broader understanding of the general picture. Also, our results can 
be used for interpretation of the experiments with pre-imposed perturbations.  
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Appendix A. Magnetic field perturbation at the plasma boundary 
 
 We assume vacuum outside the liner. The vacuum (curl-free) field perturbations 
can be presented as  
          (A1) 
where ψ(r, z.ϕ, t)  is a scalar potential. The potential ψ satisfies the Laplace equation that 
reads (for the perturbations harmonic in ϕ and z): 

 
1
r
∂
∂r
r ∂ψ
∂r

−
m2

r2
+ k2

#

$
%

&

'
(ψ = 0 .       (A2) 

[More general situation where the presence of a force-free low-pressure plasma outside 
the liner allows for the force-free configurations has been considered in Ref. 32.]  
 The solution of Eq. (A2) that does not diverge at large radii is 
 ,         (A3) 
where Km is a Hankel function of an imaginary argument. We assume that k>0, whereas 
m can be both negative and positive (and zero). The perturbation of the radial component 
of the magnetic field at the liner boundary is:  
 δBr = −Ck "Km (ka) ,         (A4) 
where the derivative is taken over the whole argument (ka). For the harmonic 
perturbations the other two components (which have a cosine dependence in the notation 
of Eq. (24)-(25)) are: 
 .     (A.5) 
 The magnetic field has to stay aligned with the perturbed surface. In the linear 
approximation the normal to the liner surface is (1,∂ξr / a∂ϕ,∂ξr /∂z) . Accordingly, the 
alignment condition in the linear approximation is: δBr +Bϕ∂ξr / a∂ϕ +Bz∂ξr /∂z = 0 . This 
condition yields the following relation between the multiplier C in Eq. (A3) and the 
amplitude fr of the radial surface displacement:  

 C =
kaBz −mBϕ
ka "Km

fr .        (A6) 

 The magnetic pressure perturbation on the liner surface is: 

 ,      (A7) 

Here the second term accounts for the fact that the unperturbed azimuthal magnetic field 
varies as 1/r outside the liner (Cf. Ref. 16). This term is responsible for the sausage 
instability of an equilibrium pinch [16]. Then, using Eq. (A.5) and eliminating C by virtue 
of Eq. (A6) and using Eq. (A5), we find that   

 fp =
fr
4πa

Km

!Km

mBϕ − kaBz( )
2

ka
−Bϕ

2
#

$

%
%

&

'

(
(

.      (A8) 

Note an error in the corresponding equation (50) of Ref. 1 where a numerical factor in 
front of the last term in the square bracket is ½ instead of 1. This, however, does not 
affect the qualitative conclusions of Ref. [1]. Returning to our Eq.(30), we find   
parameter Q as in Eq. (31).  
 

δB = −∇ψ

ψ =CKm (kr)

δBϕ = (m / r)CKm (kr);δBz = kCKm (kr)

δp = 1
4π

BϕδBϕ −
ξr
r
Bϕ
2 +BzδBz

"

#
$

%

&
'
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Appendix B. Linearly independent solutions of Eq. (65) 
 
We write Eq. (58) for the eigenfunctions Y in the dimensionless form: 

 
d 2Y
dx2

= x2Y          (B1)  

 d 2Y
dx2

= −x2Y          (B2) 

These are Weber equations whose solutions can be expressed in term of the modified 
Bessel functions K1/3 [33]. For the purposes of solving the initial value problem it is, 
however, more convenient to choose a different set of linearly-independent functions. 
Specifically, we choose the first solution of Eq. (B1) as a solution which is equal to 1 at 
x=0 and its derivative at this point is equal to zero. This solution exponentially grows at 
large x and is shown by a red line in Fig. 10. The other solution, Z1, is chosen so that it is 
equal to 1 at x=0 and exponentially decreases at large x. This solution is shown by a green 
line in Fig. 10. The derivative at x=0 is equal to - 0.7.  
 Consider now equation (B2).  It has oscillatory solutions. As before, we choose 
the first one (Y2) as equal to 1 and having a zero derivative at x=0. This solution is shown 
in magenta. The second solution (Z2) is chosen to be zero at x=0 and have exactly the 
same derivative at x=0 as the “green” curve for Eq. (B1). A convenience of this choice 
becomes clear when one solves the initial value problem.  
 
Appendix C Derivation of the pre-exponent for the WKB approximation 
 
In deriving an expression for the first-order correction it is convenient to introduce wave 
number q, Eq. (37). In the derivation we will consistently neglect the terms of the second, 
third, etc. order in ε. This means that we retain only first derivatives of the coefficients q, 
g and Q that enter Eq. (75). This allows us to write Eq. (75) in an approximate form: 

      (C1) 

where the right-hand-side is of the first order. Using the eikonal representation (76), we 
have, to the first order in the parameter ε: 

      (C2) 

Substituting these results into Eq. (C1) and retaining only terms up to the first order (i.e., 
neglecting the products of !!E  and derivatives of the coefficients Q, g and q), we obtain:  

   
(C3) 

Now, we substitute !E = !E0 + !E1  and again retain only the terms to the first order (in 

particular, in the right-hand side we retain only terms proportional to ). We recall also 

d 4 fr
dt 4

+Qg d
2 fr
dt2

− q2g2 fr =
d gq2( )
gq2dt

d3 fr
dt3

− gq2 d
dt

Q
q2
"
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dfr
dt

dfr
dt

= eE !E; d 2 fr
dt2

= eE !E 2 + !!E( );
d 3 fr
dt 3

= eE !E 3 +3 !E !!E( ); d 4 fr
dt 4

= eE !E 4 + 6 !E 2 !!E( )

!E 4 + 6 !E 2 !!E( )+Qg !E 2 + !!E( )− q2g2 =
d gq2( )
gq2dt
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that  , with Γ being the solution of the instantaneous dispersion relation (34). This 
yields: 

   
  (C4) 

 The temporal variation of the instantaneous growth rate, !Γ , is caused by the 
variation of the coefficients in the instantaneous dispersion relation (34) and can be found 
by differentiating it over the time. This procedure yields: 

 
       (C5) 

Substituting this into Eq. (C4) we find: 

 Γ
∂D
∂Γ
!E1 =

d gq2( )
gq2dt

Γ4 − gq2 d
dt

Q
q2
$

%
&

'

(
)Γ

2 − 6Γ2 +Qg( )
d g2q2( )
dt

−Γ2
d Qg( )
dt

2 2Γ2 +Qg( )
  (C6) 

We will now repeatedly use an equation that is equivalent to Eq. (34), 
 Γ4 = q2g2 −QgΓ2         (C7) 
both in the left-hand side and the right-hand side. In particular, we have 

 Γ
∂D
∂Γ

= 2 2q2g2 −QgΓ2( ) .       (C8) 

After rather lengthy calculations, we arrive at the following relatively compact 
expression:  

 !E1 =

−Γ2
2
g2
d q2g4( )
dt

+
3
2
d Qg( )2

dt

#

$
%
%

&

'
(
(+

g2

Qg
d q Qg( ))* +,

2

dt

4 2Γ2 +Qg( ) 2q2g2 −QgΓ2( )
    (C9) 

where Γ2 is a positive root of Eq. (34). One may also find helpful an easily verifiable 
identity 
 2Γ2 +Qg( ) 2q2g2 −QgΓ2( ) = g2 Q2 + 4q2( )Γ2

    (C10) 
that leads to a somewhat more compact expression for !E1 : 

 !E1 =

−
2
g2
d q2g4( )
dt

+
3
2
d Qg( )2

dt

"

#
$
$

%

&
'
'+

g2

QgΓ2
d q Qg( ))* +,

2

dt

4g2 Q2 + 4q2( )
    (C11) 
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Fig. 1 Displacement of a fluid element with respect to its initial position “1” on the unperturbed liner to 
position “2” corresponding to perturbed liner. If the liner performs un-perturbed motion, both  and 

are zero. When perturbation is present, the magnitudes of these three displacements are measured from 
the point 1 on the unperturbed imploding liner, i.e., point 1 is moving.   

 

 
 

Fig. 2 The parameter Q vs the dimensionless wave number, ka, for several values of the ratio of Bz/Bϕ: 0 (red 
lines), 0.2 (blue lines) and 0.4 (green lines). The curves in each group of the same color correspond to m=0, 
1 and 2 from the bottom to the top.  

 

Fig. 3. On the relation between the surface mass density perturbation and the initial displacement 
for the machined liner: a) A liner (green) of thickness h with sinusoidal perturbation produced by removing 
material from the  outer surface.   The removed material is shown in yellow;  is the maximum thickness 
of the material removed (we consider  as a positive quantity). In the linear approximation  is assumed 
to be small compared to the shell thickness, h. In the figure this thickness is exaggerated for the better 
visibility. The average unperturbed surface (dashed line) is situated at the distance  from the initial 
surface. Dotted line represents a median surface. This perturbation can be decomposed into a symmetric 

ξr,δϕ
ξz

fµ0 fr0

ζ
ζ ζ

ζ / 2
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one, b), that represents the mass-density perturbation, and an asymmetric one, c), that represents the 
bending of the liner. Superposing b) and c) one would get a shape shown in a). 

 

Fig. 4. At the developed (but still linear) stage, ripples on the outer side (upper surface in this figure) of the 
shell remain larger than on the inner side (lower surface on this figure).  
 

 
Fig. 5 The function H1 (Eq. (69)) characterizing the perturbation growth by the end of the 
latent phase vs. ak (red curve). The blue curve shows the function H2 (Eq. (70)) 
characterizing the perturbation growth in the model of the instantaneous growth rate. To 
fit the same plot, the function H2 is multiplied by 0.2. Magenta curve (Eq. (71)) 
characterizes the transition of the exact solution (Eq. (62)) to the developed stage, where 
the WKB approximation becomes applicable. The transition occurs at ka~7-10.  
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Fig. 6. The parameter S1 characterizing the perturbation growth during the latent phase (Eqs. (65), (66)) vs. 
ka. Red curves correspond to Bz=0, blue curves correspond to Bz=0.2B ϕ, and green curves correspond to 
Bz=0.4B ϕ. Solid lines correspond to positive m, whereas dashed lines correspond to negative m (i.e. to the 
chirality of the perturbations opposite to that of the magnetic field lines). 
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Fig. 7. WKB growth factor G vs. convergence C: a) m=3 for all curves, ka=1 (green); ka=3 (blue); ka=5 
(red); b) ka=0 for all curves; m=1 (red curve); m=3 (blue curve); m=5 (green curve); c) m=0 for all curves, 
ka=1 (green); ka=3 (blue) ka=5 (red) 
 
               a)   b) 

               
     
  
Fig. 8 Cusp formation in the imploding liner: a) Vertical cross-section showing evolution of the 
axisymmetric mode with m=0, ka*=6. All the dimensions are normalized to a*. The initial position is 
shown in magenta, the intermediate position is shown in blue; the instant of the cusp formation is sown in 
red. Initial amplitude of the radial velocity perturbation is 0.3v*. b) Horizontal cross-section showing he 
evolution of the z-independent mode, k=0, m=3. The color coding is the same as in the left panel. Dashed 
lines show the unperturbed liner positions at the same instants of time as the solid curves. Initial amplitude 
of the radial velocity perturbation is 0.2v*.   
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    a)             b)  
            
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Three-dimensional images showing nonlinear evolution of the liner. a) The helical mode with ka=7, 
m=3, halfway to the cusp formation and at the time when cusps are formed. b) The same image for the case 
where two modes are present: an axisymmetric mode with ka=5, m=0, and the helical mode with ka=7, 
m=3. Initial radial velocity perturbations for the modes are 0.2v*. 

 
Fig. 10. Eigenfunctions for Eqs. (B1) and (B2): Y1 (red);  Y2 (green); Z1 (magenta); Z2 (blue). 
 

 

           


